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Stability of a neural network model with small-world connections
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Small-world networks are highly clustered networks with small distances among the nodes. There are many
biological neural networks that present this kind of connection. There are no special weightings in the con-
nections of most existing small-world network models. However, this kind of simply connected model cannot
characterize biological neural networks, in which there are different weights in synaptic connections. In this
paper, we present a neural network model with weighted small-world connections and further investigate the
stability of this model.
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A great deal of research interest in the theory and ap
cations of small-world networks has arisen@1–8# since the
pioneering work of Watts and Strogatz@9#. Some common
properties of complex networks, such as Internet serv
power grids, human communities, and disordered porous
dia, are mainly determined by the type of connection amo
their vertices or nodes. Among various networks, one
tremal case is a regular network with a high degree of lo
clustering and a large average distance, while the other
tremal case is a random network with negligible local clu
tering and a small average distance. In between the two
tremes there are small-world networks, which are a spe
type of complex network with a high degree of local clust
ing as well as a small average distance.

Many biological neural networks are small-world ne
works @10–13#. In most existing literature about small-worl
networks, there are no weightings in the internal connecti
of nodes. However, there are many networks, particula
biological neural networks, having weights associated w
the connections. These connection-weighted networks ca
be described and characterized by the previously propo
small-world network models. Of particular interest is@13#,
where small-world neural networks have random weights
their connections; the paper studied the cluster coeffic
and the characteristic path of such networks. In this pa
we use dynamical equations to describe a connect
weighted small-world neural network model and then furth
study its stability with respect to the network topology.

For this purpose, consider a neural network withN neu-
rons described by

du~ t !

dt
52Au~ t !1Wg„u~ t !…1I , ~1!

where u(t)5@u1(t),u2(t),...,uN(t)#T is the neuron state
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vector, A5diag$a1,a2,...,aN% is a positive diagonal matrix
g(u)5@g1(u1),g2(u2),...,gN(uN)#T denotes the neuron ac
tivation functions withg(0)50, I 5@ I 1 ,I 2 ,...,I N#T is a con-
stant vector,W5$wi j %N3N is the connection-weighting ma
trix, in which, as in@13#, wi j is defined as follows: if there is
a connection between neuroni and neuronj ( j Þ i ), then
there is a uniform random distributionwi j 5wji in the con-
nection, with values 0,wi j 5wji ,1; otherwise,wi j 5wji
50 ( j Þ i ). The diagonal elements ofW are all zeros, which
means that there are no self-connections of nodes within
network. Throughout this paper, we assume that each ac
tion function in Eq.~1! satisfies the following sector cond
tion: There is a real constant,kPR, such that

0<
gj~x!2gj~y!

x2y
<k, ; x,yPR, j 51,2,...,N.

This type of neural network with full and regular conne
tions has been extensively investigated. However, neural
works with small-world connections have not been th
oughly studied, particularly with respect to their stabilitie
For example, it is not clear whether or not the small-wo
neural networks are easier to stabilize than the fully c
nected ones. In this paper, we address this question by c
fully studying the model~1!.

In the following, we always shift the equilibriumu* of
network ~1! to the origin. By making the transformx(t)
5u(t)2u* , we convert model~1! to the following:

dx~ t !

dt
52Ax~ t !1W f„x~ t !…, ~2!

where f j„xj (t)…5gj„xj (t)1uj* …2gj (uj* ), j 51,2,...,N. Note
that f j also satisfies a sector condition in the form of

f j~xj !@ f j~xj !2kxj #<0, j 51,2,...,N. ~3!

For this small-world neural network model, we have the f
lowing theoretical result.
©2003 The American Physical Society01-1
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Lemma. Let lmax(M) denote the largest eigenvalue of m
trix M. If lmax(2A/k1W),0, then network~2! is asymptoti-
cally stable about the origin.

Proof. Select a Lyapunov function as

V„x~ t !…5(
i 51

N E
0

xi
f i~s!ds.

Using the method presented in@14,15#, it is easy to verify
thatV„x(t)… is a Lyapunov function. In fact, if we define th
following function:

Gi~u!5minH E
0

u

f i~u!du,E
0

2u

f i~u!duJ ,

we haveGi(0)50, Gi(u)5Gi(uuu); for r PR1, Gi(r ).0,
r .0; Gi(r )→1`, r→1`. Let G5min$Gi%. Then

V~x!5(
i 51

N E
0

xi
f i~s!ds

>(
i 51

N

Gi~xi !

5(
i 51

N

Gi~ uxi u!

>(
i 51

N

G~ uxi u!>G~ uxu!.

Therefore, we have achieved a lower bound by a posit
radially unbounded function. It is then easy to verify@15#
that

G„ux~ t !u…<V„ux~ t !u…<qkixi2, q.1.

The derivative ofV(x) along the trajectories of Eq.~2! is,
by using Eq.~3!,

V̇~ t !5@ f 1~x1!,...,f N~xN!#@ ẋ1 ,...,ẋN#T

5 f T
„x~ t !…@2Ax~ t !1W f„x~ t !…#

52 f T
„x~ t !…Ax~ t !1 f T

„x~ t !…W f„x~ t !…

< f T
„x~ t !…F2

A

k
1WG f „x~ t !…

<lmaxS 2
A

k
1WD i f „x~ t !…i2.

Therefore, iflmax(2A/k1W),0, then we haveV̇„x(t)…,0,
implying that network~2! is asymptotically stable about th
origin.

BecauseA is a diagonal positive matrix, it is easy to d
duce the following corollary.
05290
e,

Corollary. If lmax(W),min$ai /k%, then network~2! is as-
ymptotically stable about the origin.

Although we can derive some less conservative stab
conditions for Eq.~2!, we use only the above results in th
paper, because they are very simple and easy to verify.
ther, because these conditions use only the maximum ei
value of the connection matrixW, we can ‘‘average’’ them
when using statistical methods to investigate the proper
of the connection matrix, as further explained in the follo
ing.

Aiming to describe a transition from a regular network
a random network,@9# introduced an interesting model, no
referred to as the small-world~SW! network. The original
SW model can be described as follows. We take a o
dimensional lattice ofN vertices arranged in a ring with con
nections only between nearest neighbors. We then ‘‘rewi
each connection with probabilityp. Rewiring in this context
means randomly reconnecting the whole lattice, with
constraint that no two different vertices can have more th
one connection between them, and no vertex can have a
nection with itself.

Note, however, that it is quite possible for the SW mod
to be broken into unconnected clusters. This problem can
resolved by a slight modification of the SW model, sugges
by Newman and Watts~NW! recently@1#. In the NW model,
we do not break any connection between any two nea
neighbors. Instead, we add with probabilityp a connection
between each unconnected pair of vertices. Likewise, we
not allow a vertex to be coupled to another vertex more th
once, or a vertex to be coupled with itself. Forp50, this
reduces to the originally nearest-neighbor coupled netwo
for p51, it becomes a globally coupled network. Here, w
are interested in the NW model starting from a neare
neighbor lattice with four neighbors and a connection-add
probability 0,p,1.

From a coupling-matrix point of view, network~2! with
small-world connections evolves according to the rule th
in the nearest-neighbor coupling matrixW, if wi j 50, we set
wi j 5wji 5w with probability p and a uniformly randomly
distributed weight 0,w,1. We denote the new small-worl
coupling matrix byW(p,N) and letlmax(p,N) be its largest
eigenvalue. According to the corollary above, iflmax(p,N)
,min$ai /k%, then the corresponding small-world neural ne
work is asymptotically stable about its zero state.

FIG. 1. Maximum eigenvalue ofW with respect top.
1-2
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Clearly, the network stability depends on the probabil
p, so it is more practical to investigate the statistical prop
ties of the connection matrixW. It is easy to see that th
mathematical expectation of the number of neurons that
connected to each neuron, i.e., the number of nonzero en
in each row ofW(p,N), is nc541(N25)p. Because of the
uniform random distribution of the weight values, it is al
easy to see that the mathematical expectation of the su
entries in each row ofW(p,N) is 0.5@41(N25)p#, where
N>5 ~the smallest neuron number of the nearest-neigh
lattice with four neighbors!. Thus, by Lemma 2 of@16#, we
can calculate the mathematical expectation oflmax(p,N),
which is 0.5@41(N25)p#, whereN>5. Hence, the small-
world neural network is asymptotically stable about its ze
state, in the sense of mathematical expectation, if 0.@4
1(N25)p#,min$ai /k%, N>5. This also means that th
small-world neural network is asymptotically stable in t
sense of mathematical expectation if the number of conn
tions of each neuronnc in the networks isnc,2min$ai /k%.

Figures 1 and 2 show the numerical values oflmax(p,N)
as a function of the probabilityp and the number of neuron
N. In these figures, for each pair of valuesp andN, lmax(p,N)
is obtained by averaging the results of 20 runs. From
above analysis and these figures, we can see that~1! for any
given value ofN>5, lmax(p,N) increases almost linearl
from about 2 to about (N21)/2 asp increases from 0 to 1
~2! for any given value ofpP(0,1#, lmax(p,N) increases al-
most linearly to1` asN increases to1`. The above results
imply that, if the given matrixA satisfies min$ai /k%.2 then
~1! for any givenN>5, there exists a critical valuep* such
that if 0<p<p* then the small-world neural network is a
ymptotically stable about its zero state~in the sense of math

FIG. 2. Maximum eigenvalue ofW with respect toN.
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ematical expectation!; and ~2! for any givenpP(0,1#, there
exists a critical valueN* such that if 5<N<N* then the
small-world neural network is asymptotically stable about
zero state~in the sense of mathematical expectation!.

Clearly, neural networks with small-world connections a
easier to stabilize than their regular fully connected coun
parts.

Next, we consider an example of network~1!, with the
constant vectorI 50, A5diag$5,5,...,5%, and the activation
conditiong(•)5tanh(•), which also satisfies condition~3!.

From the above results, we know that for any givenN ~or
any givenp!, there exists a correspondingp ~or a correspond-
ing N! that guarantees the stability of the network. T
hatched zone in Fig. 3 shows the values ofp and N that
ensure the stability of this small-world neural network.
this example, the averaged number of connections of e
neuron in various configurations isnc59.8592. This result
also coincides with the above analysis.

In summary, a small-world neural network model h
been presented and its stability has been analyzed. An
lytical expression has been derived that establishes the
tionship between the stability and the probabilityp. Because
there are many biological neural networks that present sm
world connections, the results obtained in this paper
practical and should be useful for further studies of this k
of neural network model.
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FIG. 3. Stability zone of the network in the given example.
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